Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637900

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

2.
Heliyon ; 10(5): e27298, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38495136

Pistacia chinensis is locally practiced for treating diabetes, pain, inflammation, and erectile dysfunction. Therefore, the current studies subjected the crude extract/fractions and the isolated compound (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxy-4H-chromen-4-one) to α-glucosidase inhibitor and anti-glycation activities. The development of long-term complications associated with diabetes is primarily caused by chronic hyperglycemia. Regarding α-glucosidase, the most significant inhibitory effect was observed with compound 1 (93.09%), followed by the methanolic extract (80.87%) with IC50 values of 45.86 and 86.32 µM. The maximum anti-glycation potential was shown by an isolated compound 1 followed by methanolic extract with effect inhibition of 90.12 and 72.09, respectively. Compound 1 is expected to have the highest gastrointestinal absorption rate, with a predicted absorption rate of 86.156%. This indicates oral suitability. The compound 1 is expected to have no harmful effects on the liver. In addition, our docking results suggest that alpha-glucosidase and isolated compounds showed strong interaction with ILE821, GLN900, and ALA901 residues, along with a -11.95 docking score.

3.
Front Cell Infect Microbiol ; 13: 1159389, 2023.
Article En | MEDLINE | ID: mdl-37313340

Introduction: Monkeypox is a zoonotic disease caused by brick-shaped enveloped monkeypox (Mpox) virus that belongs to the family of ancient viruses known as Poxviridae. Subsequently, the viruses have been reported in various countries. The virus is transmitted by respiratory droplets, skin lesions, and infected body fluids. The infected patients experience fluid-filled blisters, maculopapular rash, myalgia, and fever. Due to the lack of effective drugs or vaccines, there is a need to identify the most potent and effective drugs to reduce the spread of monkeypox. The current study aimed to use computational methods to quickly identify potentially effective drugs against the Mpox virus. Methods: In our study, the Mpox protein thymidylate kinase (A48R) was targeted because it is a unique drug target. We screened a library of 9000 FDA-approved compounds of the DrugBank database by using various in silico approaches, such as molecular docking and molecular dynamic (MD) simulation. Results: Based on docking score and interaction analysis, compounds DB12380, DB13276, DB13276, DB11740, DB14675, DB11978, DB08526, DB06573, DB15796, DB08223, DB11736, DB16250, and DB16335 were predicted as the most potent. To examine the dynamic behavior and stability of the docked complexes, three compounds-DB16335, DB15796, and DB16250 -along with the Apo state were simulated for 300ns. The results revealed that compound DB16335 revealed the best docking score (-9.57 kcal/mol) against the Mpox protein thymidylate kinase. Discussion: Additionally, during the 300 ns MD simulation period, thymidylate kinase DB16335 showed great stability. Further, in vitro and in vivo study is recommended for the final predicted compounds.


Monkeypox virus , Humans , Drug Repositioning , Molecular Docking Simulation , Computers
4.
Curr Pharm Des ; 29(19): 1504-1515, 2023.
Article En | MEDLINE | ID: mdl-37073655

BACKGROUND: Borrelia burgdorferi is regarded as an extremely dangerous bacteria causing infectious disease in humans, resulting in musculoskeletal pain, fatigue, fever and cardiac symptom. Because of all alarming concerns, no such prophylaxis setup has been available against Borrelia burgdorferi till now. In fact, vaccine construction using traditional methods is so expensive and time-consuming. Therefore, considering all concerns, we designed a multi-epitope-based vaccine design against Borrelia burgdorferi using in silico approaches. OBJECTIVE: To design an effective and safe vaccine that can activate cell-mediated and humoral immunity against Borrelia burgdorferi by using various bioinformatics tools. METHODS: The present study utilized different computational methodologies, covering different ideas and elements in bioinformatics tools. The protein sequence of Borrelia burgdorferi was retrieved from the NCBI database. Different B and T cell epitopes were predicated using the IEDB tool. Efficient B and T cell epitopes were further assessed for vaccine construction using linkers AAY, EAAAK and GPGPG, respectively. Furthermore, the tertiary structure of constructed vaccine was predicated, and its interaction was determined with TLR9 using ClusPro software. In addition, further atomic level detail of docked complex and their immune response were further determined by MD simulation and C-ImmSim tool, respectively. RESULTS: A protein with immunogenic potential and good vaccine properties (candidate) was identified based on high binding scores, low percentile rank, non-allergenicity and good immunological properties, which were further used to calculate epitopes. Additionally, molecular docking possesses strong interaction; seventeen H-bonds interactions were reported, such as THR101-GLU264, THR185-THR270, ARG 257-ASP210, ARG 257-ASP 210, ASP259-LYS 174, ASN263-GLU237, CYS 265-GLU 233, CYS 265-TYR 197, GLU267- THR202, GLN 270-THR202, TYR345-ASP 210, TYR345-THR 213, ARG 346-ASN209, SER350- GLU141, SER350-GLU141, ASP 424-ARG220 and ARG426-THR216 with TLR-9. Finally, high expression was determined in E. coli (CAI = (0.9045), and GC content = (72%)). Using the IMOD server, all-atom MD simulations of docked complex affirmed its significant stability. The outcomes of immune simulation indicate that both T and B cells represent a strong response to the vaccination component. CONCLUSION: This type of in-silico technique may precisely decrease valuable time and expenses in vaccine designing against Borrelia burgdorferi for experimental planning in laboratories. Currently, scientists frequently utilize bioinformatics approaches that speed up their vaccine-based lab work.


Borrelia burgdorferi , Vaccines , Humans , Epitopes, T-Lymphocyte/chemistry , Molecular Docking Simulation , Vaccinology/methods , Escherichia coli , Epitopes, B-Lymphocyte/chemistry , Cloning, Molecular , Computational Biology , Vaccines, Subunit/chemistry
5.
J Biomol Struct Dyn ; 41(19): 9344-9355, 2023 11.
Article En | MEDLINE | ID: mdl-36331082

Monkeypox virus is an infectious agent that causes fever, Pneumonitis encephalitis, rash, lymphadenopathy and bacterial infection. The current outbreak of monkeypox has reawakened the global health concern. In the current situation of increasing viral infection, no vaccine or drug is available for monkeypox. Thus, there is an urgent need for viable vaccine development to prevent viral transmission by boosting human immunity. Herein, using immunoinformatics approaches, a multi-epitope vaccine was constructed for the Monkeypox virus. In this connection, B-Cell and T-cell epitopes were identified and joined with the help of adjutants and linkers. The vaccine construct was selected based on promising vaccine candidates and immunogenic potential. Further epitopes were selected based on antigenicity score, non-allergenicity and good immunological properties. Molecular docking reveals strong interactions between TLR-9 and the predicted vaccine construct. Finally, molecular dynamics simulations were performed to evaluate the stability and compactness of the constructed vaccine. The MD simulation results demonstrated the significant stability of the polypeptide vaccine construct. The predicted vaccine represented good stability, expression, immunostimulatory capabilities and significant solubility. Design vaccine was verified as efficient in different computer-based immune response investigations. Additionally, the constructed vaccine also represents a good population coverage in computer base analysis.Communicated by Ramaswamy H. Sarma.


Vaccines , Humans , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Epitopes, B-Lymphocyte , Vaccines, Subunit , Computational Biology
6.
J Genet Eng Biotechnol ; 20(1): 136, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-36125645

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. RESULT: The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. CONCLUSION: This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.

7.
J Genet Eng Biotechnol ; 20(1): 100, 2022 Jul 11.
Article En | MEDLINE | ID: mdl-35821357

BACKGROUND: Burkholderia pseudomallei is an infectious agent causing severe disease melioidosis resulting in pneumonia, fever, and acute septicemia in humans. B. pseudomallei show resistance to drugs. No such FDA-approved vaccine is available against B. pseudomallei, and treatment is limited to therapy. Therefore, the scientific study was designed to develop a vaccine for B. pseudomallei. The protein sequence of B. pseudomallei was retrieved from NCBI. B-cell and T-cell epitopes were identified and further screened for allergenicity, antigenicity docking, and simulation. RESULTS: Here, in this study, in silico approach was applied to design a multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of proteins considered to be potential novel vaccine candidates. Peptide epitopes were joined by adjuvant and EAAAK, CPGPG, and AAY linkers. This constructed vaccine was subjected to in silico immune simulations by C-ImmSim. The protein construct was cloned into PET28a (+) vector for expression study in Escherichia coli using SnapGene. CONCLUSION: The designed multi-epitope vaccine was analyzed for its physicochemical, structural, and immunological characteristics, and it was found to be antigenic, soluble, stable, nonallergenic, and have a high affinity to its target receptor. The immune simulation studies were carried out on the C-ImmSim showing increased production of cellular and humoral responses indicating that the constructed vaccine proved effective and able to provoke humoral and cell-mediated response immune responses. In silico study could be a breakthrough in designing effective vaccines to eradicate B. pseudomallei globally.

8.
J Genet ; 982019 Dec.
Article En | MEDLINE | ID: mdl-31819019

Cancer is one of the deadliest complex diseases having multigene nature where the role of single-nucleotide polymorphism (SNP) has been well explored in multiple genes. TOX high mobility group box family member 3 (TOX3) is one such gene, in which SNPs have been found to be associated with breast cancer. In this study, we have examined the potentially damaging nonsynonymous SNPs(nsSNPs) in TOX3 gene using in silico tools, namely PolyPhen2, SNP&GO, PhD-SNP and PROVEAN, which were further confirmed by I-Mutant, MutPred1.2 and ConSurf for their stability, functional and structural effects. nsSNPs rs368713418 (A266D), rs751141352 (P273S, P273T), rs200878352 (A275T) have been found to be the most deleterious that may have a vital role in breast cancer. Premature stop codon producing SNPs (Q527STOP), rs1259790811 (G495STOP), rs1294465822 (S395STOP) and rs1335372738 (G8STOP) were also found having prime importance in truncated and malfunctional protein formation. We also characterized regulatory SNPs for its potential effect on TOX3 gene regulation and found nine SNPs that may affect the gene regulation. Further, we have also designed 3D models using I-TASSER for the wild type and four mutant TOX3 proteins. Our study concludes that these SNPs can be of prime importance while studying breast cancer and other associated diseases as well. They are required to be studied in model organisms and cell cultures, and may have potential importance in personalized medicines and gene therapy.


Apoptosis Regulatory Proteins/genetics , Polymorphism, Single Nucleotide , Trans-Activators/genetics , Binding Sites , Breast Neoplasms/genetics , Computational Biology , Computer Simulation , Databases, Genetic , Female , Humans , Models, Molecular , Mutant Proteins , Phosphorylation , Protein Conformation
...